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TREE ISLANDS 
• More elevated - woody vegetation 

Wet Season 

Dry Season 

Okavango Delta Florida Everglades 

Similar Dynamics - more complex 
landscape: Everglades freshwater system 
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1 Okefenokee Swamp, GA 
2 Marshall Loxahatchee NWR, FL 
3 Everglades National Park, FL 
4 Quiet & Calabash Marshes, Belize 
5 The Pantanal, Brazil 
6 Okavango Delta, Botswana 

1 
2,3 

4 







1

10

100

1000
Fr

e
q

u
e

n
cy

 

Area (m2) 

1940 
n = 1053  
mean = 84777  
sd = 161500 
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1995 
n = 578 
mean = 59397 
sd = 126683 

Large change in 
areal extent in 
the 55 year 
period 





“Ghost Island” 

Former tree island that 
has been deforested 



DEM-derived (survey verified) Island Height 
(1995 Islands only, and Ghost Island areas) 
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Island height (DEM adj) (cm) 

1995 islands

Ghost islands

n = 422 mean = 69.5 sd = 12.3 

n = 499 mean = 74.8 sd = 11.4 



Two-phase Landscape 
• Tree islands:  
 - vegetation: trees 

 - more elevatedless flooded 
 - phosphorus “rich” 

• Marshes/Wet Prairies:  
 - “Herbaceous vegetation” 

 - less elevatedmore flooded 
 - phosphorus “poor” 
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Tree islands are nutrient rich  “Fertility Islands”  
A “Savanna” (Wetzel et al, 2005): mosaic of tree and “herbaceous” patches 
coexisting in the same landscape 

Tree 
Islands 

Wet 
Prairies 

 (sawgrasses, graminoids) 

(D’Odorico, et al., 2011) 



TREE ISLAND DYNAMCS 

• How do we explain this coexistence? 

• Stability & resilience of tree islands 

• Impact of changes in tree cover or water level 

Tree Islands 

Wet Prairies 

Stable coexistence of two states bistability  what 
causes this bistability?  



Plant Community 

Physical 
Environment 

Feedback 
between the 

system and its 
environment 

Ecogeomorphic 
Processes 

Effects of positive feedbacks on ecosystem dynamics 
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Bistable System “Unistable System” 

Tree 
Island Marsh 



Positive feedbacks: trees create their own “habitat” 

Available Phosphorous: trees 
enhance P availability 

(Wetzel et al.,  2005; Lawrence, D’Odorico  

et al., 2007; DeLonge, D’Odorico et al, 2008) 

Additional P-

inputs to treed 
areas 

Canopy  

Growth 
(P-limited) 

Increased 

 Canopy  
“trapping” 

Soil formation/accumulation : 
trees favor soil formation 

Tree  

Growth 

Soil Accretion 

 island 
formation 

Accumulation of soil 

organic matter & 

precipitation of 
carbonates 

(McCarthy et al., 1994; Graf et al., 2008 ) 

Atmospheric Deposition of P 

Canopy 
trapping 

Enhanced P 
Deposition 



Other mechanisms of P accumulation in Tree Islands 

P P P P 

“Evapotranspirational Pumping “ (Ross et al., 2006) 

Guano Deposition 
(Frederick and Powell, 1994) 

Other feedbacks: interactions of peat accretion with soil P cycle 



Feedbacks  Bistability 
Process-based zero-dimensional Model 

• Tree growth limited by prolonged waterlogging 
and P availability 

• In the absence of these limitations trees would 
have competitive advantage over herbaceous 
vegetation 

 TTTa
dt

dT
cc 

T tree biomass 

 2 cc

dG
a G G T G

dt
   G herbaceous biomass 

ccT Carrying capacity for trees 

ccG Carrying capacity for 
grasses 



Dynamics of Tree Biomass:  TTTa
dt

dT
cc 

a 

2 

Based on band dendrometer data 
(D’Odorico, Engel, Oberbauer, et al.) 



Feedbacks  Bistability 
Process-based zero-dimensional Model 

• Tree growth limited by prolonged waterlogging and P 

 TTTa
dt

dT
cc 

T tree biomass 

    Carrying capacity for trees 
(depends on P & hydroperiod) 

)(0 PfTTcc 

∆h 

To 

0 0.8 m -0.4 m 

flooded 

Not flooded 
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Ground Surface 



Tree  Soil Accretion 

• Depends on tree biomass and hydroperiod 

LossSoilonAccumulatiSoil
dt

hd


 )(

1 2

( )
( )

d h
T h k

dt
 


   

Soil dynamics much slower 
than vegetation dynamics 

Soil Respiration & Fires 

h hw 

∆h=h-hw 



• Tobon et al. [2004]: P in 
throughfall, stemflow, & 
precipitation in 4 
adjacent Amazonian 
forest sites 

Trees  Soil P Balance 

Pin=  T +     

  = strength of canopy 

dependent P-input 

                                                      

  

outin PP
dt

dP




P Availability & Elevation  Tree dynamics 
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Equilibrium States  
In the short term ∆h≈const 
Trees establish in elevated & 
P-rich areas 

Pin=  T +     

Background rate of P 

deposition 

 =2.0 kg P ha-1  

P deposition 

(m) 

 =0.2 kg P ha-1  

(m) 

Stable 
Unstable Alternative stable States 

Ghost Island 



In the long term: dependence on the soil feedback    

1 2
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h hw 

∆h=h-hw 
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Ground Surface 
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How do tree islands get established? 
• Trees colonize marshes/prairies during prolonged droughts 

• Rock outcrops provide microsites for tree establishment 



Feedbacks  Bistability 
Process-based dimensional Model 

• Extend the zero point model to incorporate 
spatial dynamics 

• Pattern formation? 

T tree biomass 
ccT Carrying capacity for trees 

(depends on hydroperiod only) 
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P P P P 

“Evapotranspirational Pumping “ (Ross et al., 2006) 

Guano Deposition 
(Frederick and Powell, 1994) 

Magnitude of facilitation    inhibition 

Determine the distance at which maximum inhibition occurs 

Limited by atmospheric 
phosphorus deposition 
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Advection 
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There is also a general 
hydraulic gradient across 

the landscape 

Atmospheric Deposition 
of P 

Canopy 
trappin

g 
Enhanced P 
Deposition 



Full representations of kernel function under 
different levels of anisotropy 

0 

0.25 

0.5 



• Small time step and long runs to account for  
soil feedbacks.  

• Patterns often depend on initial distribution of 
elevation and vegetation.   

• Changes in soil elevation effectively limit the 
spreading of trees. 

• These mounds are stable in location. 

 



• Under low anisotropic conditions, elliptical 
islands form 

• These islands migrate slowly in the down flow 
direction. 



• Under medium anisotropic conditions, 
elongated islands form 

• These islands migrate down flow direction. 



• Under high anisotropic conditions, the islands 
migrate and extend until the form into full 
bands,  in general here the rate of island 
migration exceeds the rate of elevation loss. 



• Under high anisotropic conditions, with 
moderately low atmospheric phosphorus input 
the islands migrate and extend but are unable 
to from full bands. 



• Under high anisotropic conditions and low 
atmospheric P deposition the islands migration 
“pressure” exceeds the ability of vegetation to 
stabilize and raised elongated treeless islands form. 

• These islands migrate only so long as they have 
trees, and treeless islands are eventually lost. 



Conclusions 
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• Feedbacks between Trees and P Deposition & 
Soil Accretion may lead to bistable landscapes 

• In the long run Tree Islands and Marshes are 
alternative equilibria  

• The state of elevated island with no trees is a 
transient (short term) feature 

• Tree island are a metastable state  
coexisting with the marsh state  only limited 
resilience 


